.Model 模型参数 AF BF BR CJC CJE CJS (CCS) EG FC GAMMA IKF (IK) IKR IRB IS ISC (C4) ISE (C2) ISS ITF KF MJC (MC) MJE (ME) MJS (MS) NC NE NF NK NR NS PTF QCO RB RBM RC RCO RE 含 义 flicker noise exponent ideal maximum forward beta ideal maximum reverse beta base-collector zero-bias p-n capacitance base-emitter zero-bias p-n capacitance Substrate zero-bias p-n capacitance bandgap voltage (barrier height) forward-bias depletion capacitor coefficient epitaxial region doping factor corner for forward-beta high-current roll-off corner for reverse-beta high-current roll-off current at which Rb falls halfway to transport saturation current base-collector leakage saturation current base-emitter leakage saturation current substrate p-n saturation current transit time dependency on Ic flicker noise coefficient base-collector p-n grading factor base-emitter p-n grading factor substrate p-n grading factor base-collector leakage emission coefficient base-emitter leakage emission coefficient forward current emission coefficient high-current roll-off coefficient reverse current emission coefficient substrate p-n emission coefficient excess phase @ 1/(2?TF)Hz epitaxial region charge factor zero-bias (maximum) base resistance minimum base resistance collector ohmic resistance epitaxial region resistance emitter ohmic resistance 单 位 farad farad farad eV 默认值 1.0 100.0 1.0 0.0 0.0 0.0 1.11 0.5 1E-11 amp amp amp amp amp amp amp amp infinite infinite infinite 1E-16 0.0 0.0 0.0 0.0 0.0 0.33 0.33 0.0 2.0 1.5 1.0 0.5 1.0 1.0 degree coulomb ohm ohm ohm ohm ohm 0.0 0.0 0.0 RB 0.0 0.0 0.0 噪声指数 最大正向放大倍数最大反向放大倍数集电结电容 发射结电容 零偏集电极-衬底电 饱和电流 集电结漏电流 发射结漏电流 噪声系数 集电结漏电系数 发射结漏电系数 正向电流系数 最大基极电阻 最小基极电阻 TF TR TRB1 TRB2 TRC1 TRC2 TRE1 TRE2 TRM1 TRM2 T_ABS T_MEASURED T_REL_GLOBAL T_REL_LOCAL VAF (VA) VAR (VB) VJC (PC) VJE (PE) VJS (PS) VO VTF XCJC XCJC2 XTB XTF XTI (PT) ideal forward transit time ideal reverse transit time RB temperature coefficient (linear) RB temperature coefficient (quadratic) RC temperature coefficient (linear) RC temperature coefficient (quadratic) RE temperature coefficient (linear) RE temperature coefficient (quadratic) RBM temperature coefficient (linear) RBM temperature coefficient (quadratic) absolute temperature measured temperature relative to current temperature relative to AKO model temperature forward Early voltage reverse Early voltage base-collector built-in potential base-emitter built-in potential substrate p-n built-in potential carrier mobility knee voltage transit time dependency on Vbc fraction of CJC connected internally to Rb sec sec 000000000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C -1 C -2 C -1 C -2 C -1 C -2 C -1 C -2 0000C C C C infinite infinite 0.75 0.75 0.75 10.0 infinite 1.0 1.0 0.0 0.0 3.0 volt volt volt volt volt volt volt fraction of CJC connected internally to Rb forward and reverse beta temperature coefficient transit time bias dependence coefficient IS temperature effect exponent 正向传递时间 反向传递时间 RB的温度系数 正向和反向放大倍传递时间系数 IS的温度影响系数附件B、 PSpice Goal Function 特征函数 Bandwidth (1, db_level) BPBW (1, db_level) CenterFreq (1, db_level) Falltime (1) Gain Margin (1,2) GenFall (1) GenRise (1) HPBW (1, db_level) LPBW (1, db_level) Maxr (1, begin-x, end-x) Overshoot (1) Peak (1, n_occur) 功能说明 计算波形1从最大值下降db_level db的波形宽度。 Same as Bandwidth (1, db_level) 计算波形1从最大值下降db_level db的两点的中心频率。 计算波形1的下降时间。 计算波形1的相位为-180。时,波形2的分贝值。 类似于Falltime (1),但它的下降时间相对的y轴是起点于与GenFall (1)类似,只是它是上升时间。 查找第一次比最大值低db_level db的x坐标。(上升沿) 与HPBW类似,只是用于下降沿。 查找区间的最大值。 计算最大值与终点之间y轴坐标差与终点值的百分比。 查找第n-occur个峰值点的Y值 Period (1) Phase Margin (1,2) Pulsewidth (1) Risetime (1) Swingr (1, begin-x, end-x) TPmW2 (1, Period) XatNthy (1, Y-value, n-occur) XatNthYn(1,Y_value,n_occur) XatNthYp(1,Y_value,n_occur) XatNthYpct(1,Y_PCT,n_occur) YatX(1,X_value) YatXpct(1,X_pct) 计算波形1的周期。 查找波形1在0分贝时波形2的相位。 计算波形1的脉冲宽度。 计算波形1的上升时间。 计算在指定范围内,波形1的最大值与最小值之差。 查找波形1上第n-occur个Y-value值时的X坐标值。 与XatNthy类似,但它查找的Y值必须在下降沿上。 与XatNthy类似,但它查找的Y值必须在上升沿上。 查找第n-occur个Y轴值为Y轴范围的Y_pct%时的X轴值。查找X-value值处的Y值。 查找X轴值为X轴范围的X_pct%时的Y轴值。 附件C Modeling voltage-controlled and temperature-dependent resistors Analog Behavioral Modeling (ABM) can be used to model a nonlinear resistor through use of Ohm抯 law and tables and expressions which describe resistance. Here are some examples. Voltage-controlled resistor If a Resistance vs. Voltage curve is available, a look-up table can be used in the ABM expression. This table contains (Voltage, Resistance) pairs picked from points on the curve. The voltage input is nonlinearly mapped from the voltage values in the table to the resistance values. Linear interpolation is used between table values. Let抯 say that points picked from a Resistance vs. Voltage curve are: Voltage 0.5 1.0 2.0 Resistance 25 50 100 The ABM expression for this is shown in Figure 1. Figure 1 - Voltage controlled resistor using look-up table Temperature-dependent resistor A temperature-dependent resistor (or thermistor) can be modeled with a look-up table, or an expression can be used to describe how the resistance varies with temperature. The denominator in the expression in Figure 2 is used to describe common thermistors. The TEMP variable in the expression is the simulation temperature, in Celsius. This is then converted to Kelvin by adding 273.15. This step is necessary to avoid a divide by zero problem in the denominator, when T=0 C. NOTE: TEMP can only be used in ABM expressions (E, G devices). Figure 3 shows the results of a DC sweep of temperature from -40 to 60 C. The y-axis shows the resistance or V(I1:-)/1A. Figure 2 - Temperature controlled resistor Figure 3 - PSpice plot of Resistance vs. Temperature (current=1A) Variable Q RLC network In most circuits the value of a resistor is fixed during a simulation. While the value can be made to change for a set of simulations by using a Parametric Sweep to move through a fixed sequence of values, a voltage-controlled resistor can be made to change dynamically during a simulation. This is illustrated by the circuit shown in Figure 5, which employs a voltage-controlled resistor. Figure 4 - Parameter sweep of control voltage This circuit employs an external reference component that is sensed. The output impedance equals the value of the control voltage times the reference. Here, we will use Rref, a 50 ohm resistor as our reference. As a result, the output impedance is seen by the circuit as a floating resistor equal to the value of V(Control) times the resistance value of Rref. In our circuit, the control voltage value is stepped from 0.5 volt to 2 volts in 0.5 volt steps, therefore, the resistance between nodes 3 and 0 varies from 25 ohms to 100 ohms in 25 ohm-steps. Figure 5 - Variable Q RLC circuit Figure 6 - Output waveforms of variable Q RLC circuit A transient analysis of this circuit using a 0.5 ms wide pulse will show how the ringing differs as the Q is varied. Using Probe, we can observe how the ringing varies as the resistance changes. Figure 6 shows the input pulse and the voltage across the capacitor C1. Comparing the four output waveforms, we can see the most pronounced ringing occurs when the resistor has the lowest value and the Q is greatest. Any signal source can be used to drive the voltage-controlled resistance. If we had used a sinusoidal control source instead of a staircase, the resistance would have varied dynamically during the simulation. 附件D 变压器PSpice模型 等效电路变压器模型 *Transformer Subcircuit Parameters *RATIO = Turns ratio= Secondary/Primary *RP??? = Primary DC resistance *RS??? = Secondary DC resistance *LEAK? = Leakage inductance *MAG?? = Magnetizing inductance ?*Generic Transformer *dw: 2-8-99 corrected VISRC polarity and FCTRL configuration *Connections: *???????????? Pri+ *???????????? | Pri- *???????????? | | Sec+ *???????????? | | | Sec- *???????????? | | | | .SUBCKT TRANS 1 2 3 4 PARAMS: RATIO=\"1\" RP=\"0\".1 RS=\"0\".1 LEAK=\"1u\" MAG=\"1k\" VISRC?? 4 9 0V FCTRL?? 5 2 VISRC {RATIO} EVCVS?? 8 9 5 2 {RATIO} RPRI??? 1 7 {RP} RSEC??? 8 3 {RS} LLEAK?? 7 5 {LEAK} LMAGNET 2 5 {MAG} .ENDS TRANS 等价于用K_Line把两个电感关联起来. ?CT中心抽头输出变压器模型 ?*TRANSCT:Transformer Subcircuit Parameters *RATIO = Turns ratio (= Secondary/Primary) *RP??? = Primary DC resistance *RS??? = Secondary DC resistance *LEAK? = Leakage inductance *MAG?? = Magnetizing inductance *5:1 Centre-Tapped Transformer *Connections:*????? Pri+ *???????? | Pri- *???????? | | Sec+ *???????? | | | SecCT *???????? | | | | Sec- *???????? | | | | | .SUBCKT 5TO1CT? 1 2 3 4 5 PARAMS: RATIO=\"0\".2 RP=\"0\".1 RS=\"0\".1 LEAK=\"1u\" MAG=\"1u\" RPRI? 1 7 {RP} LLEAK 7 10 {LEAK} LMAGNET 6 10 {MAG} VSEC1 9 4 DC 0V FSEC1 6 2 VSEC1 {(RATIO/2)} ESEC1 8 9 10 2 {(RATIO/2)} RSEC1? 8 3 {(RS/2)} VSEC2 12 5 DC 0V FSEC2 6 2 VSEC2 {(RATIO/2)} ESEC2 11 12 10 2 {(RATIO/2)} RSEC2 11 4 {(RS/2)} .ENDS 5TO1CT Transformer变压器相关参数: Primary turns 一次线匝 Secondary turns 二次线匝 Primary (Winding)resistance 初级线圈电阻 Primary leakage inductance 初级线圈漏电感 Primary coil inductance 初级线圈电感 Coefficient of Coupling 耦合系数 Magnetizing inductance 磁化电感 Primary-to-Secondary Turns Ratio 初次级匝数比 附件E 创建元器件的Model Maker中已有模型 如下: AC Motor 交流发动机 Bjt 双极性结型晶体管 Boost Converter 升压转换器 Buck Boost Converter 降-升压型变换器 Buck Converter 降压转换器 Cuk Converter Cuk转换器 Diode 二极管 Lossyline 高损耗线 Microstrip line 微波带状线、微带线 Open End Microstrip line 开口的微带线、开放式的微带线、末端开口的微带线 MOSFET(4pins, DGS Sub) (Metal-Oxide-Semiconductor Field-Effect Tansistor)MOS场效晶体管,绝缘、金属氧化物半导体晶体管 Operational Amplifier 运算放大器 RF Spiral Inductor 射频螺旋电感 Interdigital Capacitor 交指电容 SCR (Semiconductor Control Rectifier) 半导体控制整流器 Stripline Bend Strip line 带状传输线、电介质条状线 Linear Transformer with Neutral Terminal 中性线段线性变压器、中性点接线端线性变压器 Two Winding Linear Transformer 双绕组线性变压器、双线圈线性变压器 Ideal Transformer (Multiple Winding) 理想变压器(多线圈) Linear Transfomer(Multiple Winding) 线性变压器(多线圈) Nonlinear Transformer(Multiple Winding) 非线性变压器(多线圈) Waveguide 波导管、波导器 Zener (diodes) 齐纳(二极管)
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务